Norm of the discrete Cesàaro operator minus identity
نویسندگان
چکیده
The norm of $C-I$ on $\ell^p$, where $C$ is the Ces\`aro operator, shown to be $1/(p-1)$ when $1<p\le2$. This verifies a recent conjecture G. J. O. Jameson. $\ell^p$ also determined $2< p<\infty$. two parts together answer question raised by Bennett in 1996. Operator norms continuous case, Hardy's averaging operator minus identity, are already known. Norms discrete and cases coincide.
منابع مشابه
the crisis of identity in jhumpa lahiris fiction: interpreter of maladies and the namesake
شکل گیری هویت(identity) مقوله مهمی در ادبیات پراکنده مردم(diasporan literature) می باشد. آثار جومپا لاهیری(jhumpa lahiri) ، نویسنده هندی آمریکایی، در سالهای اخیر تحسین منتقدین را به خود معطوف کرده است. وی در این آثار زندگی مهاجران و تلاش آنان برای پیدا کردن جایگاهشان در یک فرهنگ بیگانه را به تصویر کشیده است. این تجربه همواره با احساساتی نظیر دلتنگی برای گذشته، بیگانگی و دوری همراه است. با این ح...
15 صفحه اولNorm-Observable Operator Models
Hidden Markov models (HMMs) are one of the most popular and successful statistical models for time series. Observable operator models (OOMs) are generalizations of HMMs that exhibit several attractive advantages. In particular, a variety of highly efficient, constructive, and asymptotically correct learning algorithms are available for OOMs. However, the OOM theory suffers from the negative pro...
متن کاملNorm Comparison Inequalities for the Composite Operator
The purpose of this paper is to establish the Lipschitz norm and BMO norm inequalities for the composition of the homotopy operator T and the projection operator H applied to differential forms in R, n ≥ 2. The harmonic projection operator H, one of the key operators in the harmonic analysis, plays an important role in the Hodge decomposition theory of differential forms. In the meanwhile, the ...
متن کاملCan you compute the operator norm?
In this note we address various algorithmic problems that arise in the computation of the operator norm in unitary representations of a group on Hilbert space. We show that the operator norm in the universal unitary representation is computable if the group is residually finite-dimensional or amenable with decidable word problem. Moreover, we relate the computability of the operator norm on the...
متن کاملOperator-valued extensions of matrix-norm inequalities
The bilinear inequality is derived from the linear one with the help of an operatorvalued version of the Cauchy-Schwarz inequality. All these results, at least in their finite form, are obtained by simple and elegant methods well within the scope of a basic course on Hilbert spaces. (They can alternatively be obtained by tensor product techniques, but in the author’s view, these methods are les...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Inequalities & Applications
سال: 2022
ISSN: ['1331-4343', '1848-9966']
DOI: https://doi.org/10.7153/mia-2022-25-04